

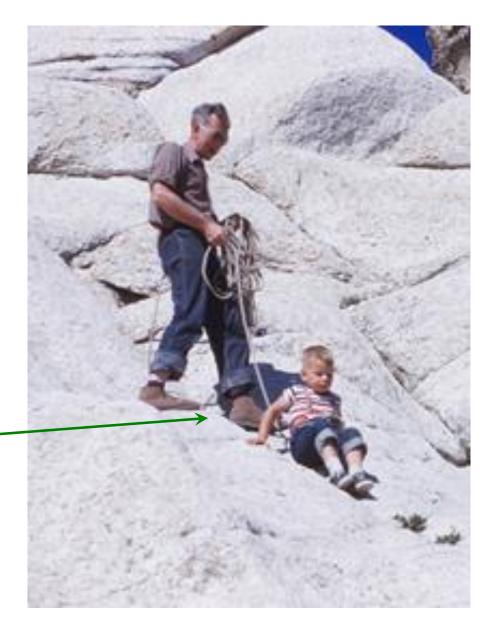
Thank you Ecology Center & Sierra Club Bay Chapter!

6/10/2017

Doug McKenzie doug@sunwork.org

Solar Simplifed – Getting Started

Who's Doug?



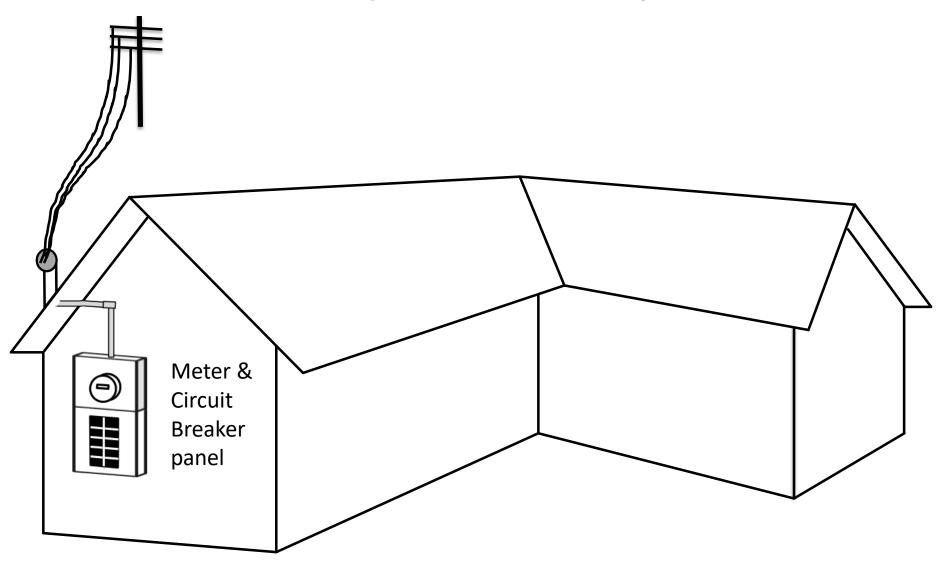
LinkedIn.com/in/renewabledoug Linkedin

Long Time Sierra Club Member

EV enthusiast

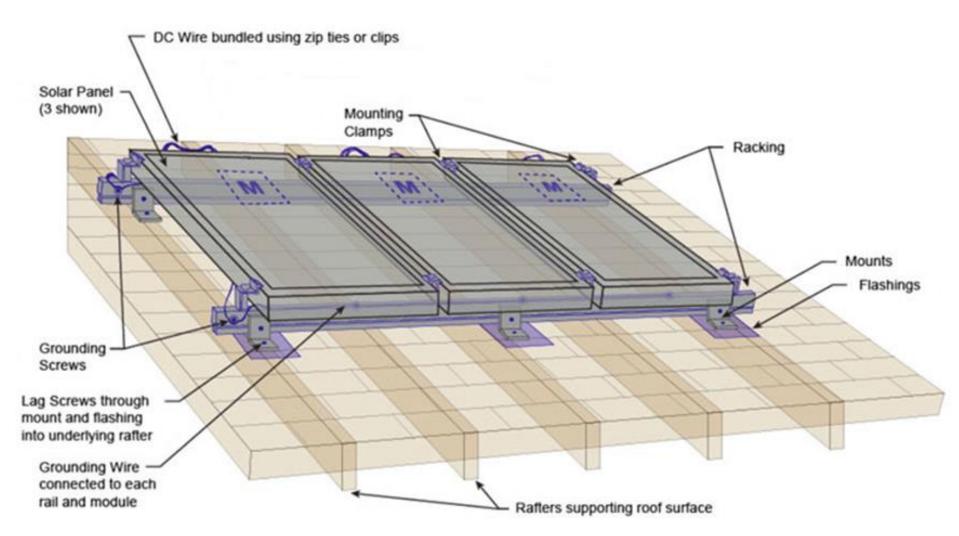
Solar Simplified – Getting Started

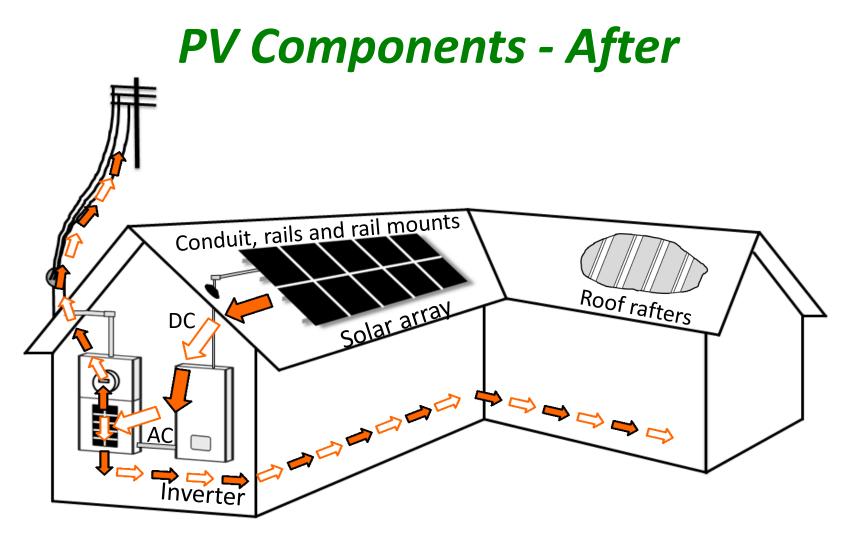
Topics


- Components of a PV system
- Solar Financing
- Solar Economics
- Environmental Benefits of Solar
- How to Find a Great Installer
- Solar in California and the World

Solar Simplified – The Deeper Dive June 24, 1:30-3:30pm, Ecology Center

Topics


- Solar Panel and Inverter Choices
- Electric Vehicles
- Batteries
- Home Appliance Electrification
- Community Choice Energy
- Policies (that promote or stymie solar)
- The Future of Solar


PV Components - Before

PV Components

Roof attachments - Racking and Mounting

Solar electricity goes to the nearest load

- 1. Home loads
- 2. Out the meter to the grid and neighbors' loads
- 3. Grid to substation and beyond

PV Components - Mounts

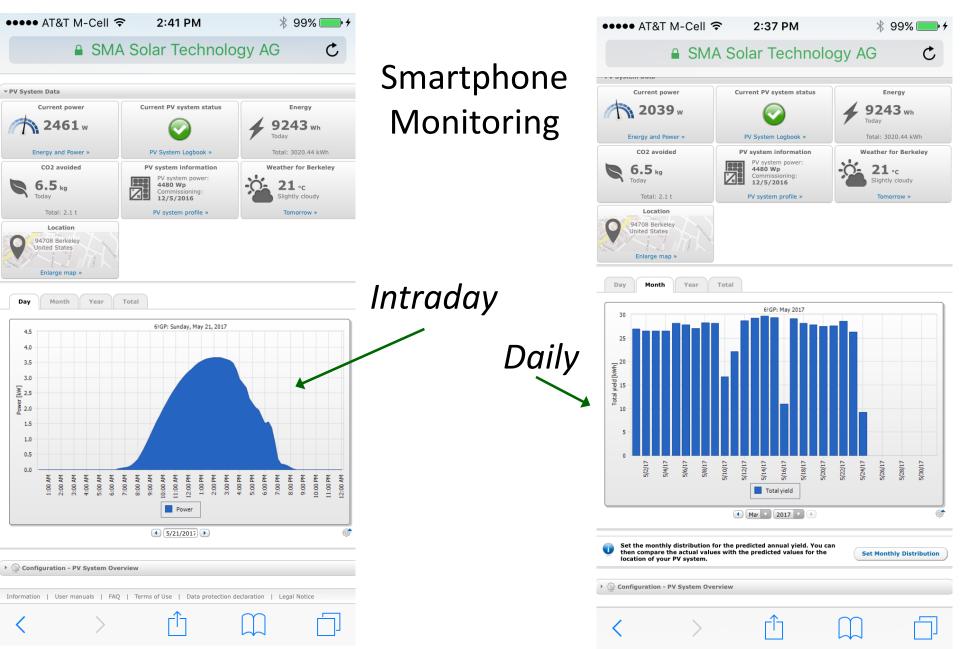
PV Components – Flashing

PV Components – Ready for Rails

PV Components – Rails and conduit

PV Components – Installers' View!

PV Components – "Fishing" the Wire


PV Components - Inverter

PV Components - Panel Layout

PV Components – Monitoring

Solar Simplified – Getting Started

Topics

- Components of a PV system
- Solar Financing
- Solar Economics
- Environmental Benefits of Solar
- How to Find a Great Installer
- Solar in California and the World

Homeowner owns the system – *pros and cons*

Pros: Eligible for the 30% federal tax credit on the total system cost. Known, fixed cost for electricity for 25+ years. You probably don't need to insure your system (check with your insurer).

Con: Homeowner is responsible for system production, maintenance & repairs*

Cash purchase

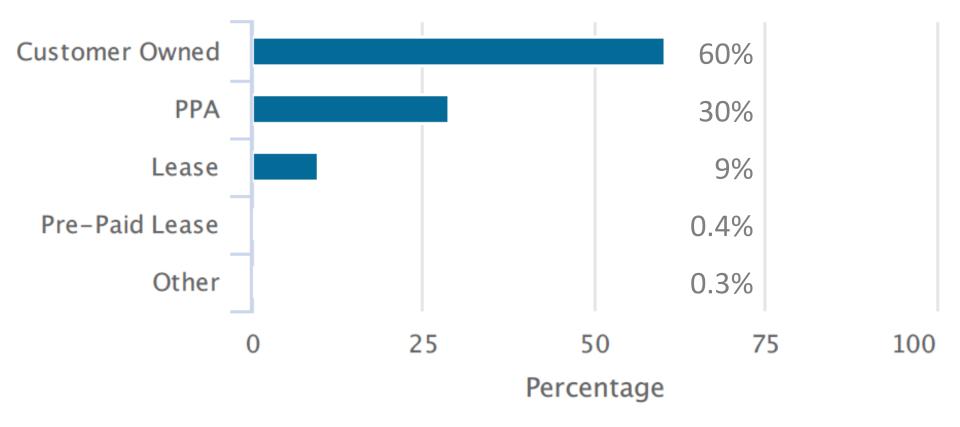
- Excellent return on investment
- High upfront cost (\$10,000 to \$16,000 for a 4 kW system)
- Home Equity Loan
 - Good interest rate** (4+%) = good ROI. Can be minimal upfront cost
 - Low interest rate depends on good credit score. Home is at risk on default
- **Unsecured Solar Loan**
 - Home is not at risk on default. Minimal upfront cost
 - Need good credit. High interest rates ** (~7-14%) *** = lower ROI
- Property-Tax Loan (PACE Property Assessed Clean Energy)
 - Low upfront cost. Good credit is not needed. Repayment is transferable to new owners
 - Higher interest rates (5 yr: ~6.75% ... 20 year: ~8.4%) **** = lower ROI
- * However, almost all installers provide at least a 10 year workmanship warranty
- ** Interest may be tax deductible
- *** One source (Lightstream): <u>https://www.lightstream.com/solar-financing</u>
- **** ABAG: http://abag.ca.gov/bayren/pace/pdfs/PACEcomparison_060315.pdf

Doug McKenzie – doug@sunwork.org

Homeowner **does not own** the system* – pros and cons

- Power Purchase Agreement (PPA): Pay per kWh for energy generated by the system (monthly payment is not fixed)
- Lease: Pay a set monthly fee for energy generated by the system
- PPAs and Leases may be \$zero down, fully pre-paid, or partial-down

Pros (PPAs and Leases)


- Not responsible for any system maintenance
- Can be zero upfront cost to go solar
- Payback for lower cost of electricity is immediate (for \$0 down systems)

Cons (PPAs and Leases)

- Not eligible for the 30% federal tax credit
- Home may become encumbered with a lien (commonly 20 years)
- May complicate sale of home
- PPAs and leases may have an "escalator" clause increasing your payments over time
- * Known as "Third Party Ownership" or TPO

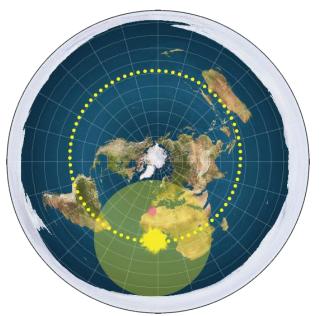
Solar Financing

Ownership vs. Third-Party Ownership

californiadgstats.ca.gov/charts – through 3/31/2017

Doug McKenzie – doug@sunwork.org

Solar Financing – For Renters

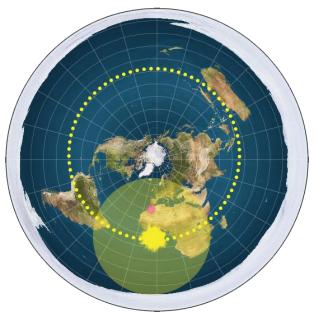

PG&E allows "Virtual Net Metering"

- The solar feeds a dedicated meter
- Individual units are credited with a portion of the solar electricity
- Building owner must pay for potential upgrades to PG&E transformer, etc.
- See PG&E NEMV

PG&E allows "Net Metering Aggregation"

- PG&E customers with multiple meters on one property, all in one name
- See PG&E NEMA

Community Choice Energy! ...Come back June 24



Solar Financing – Low-Income

Grid Alternatives

- Low to no-cost PV for low-income families
- CA administrator for Single-Family Affordable Solar Homes (SASH) program
- Turnkey design and installation services for multifamily affordable housing developers
- Participate in community solar programs

Community Choice Energy! ...Come back June 24

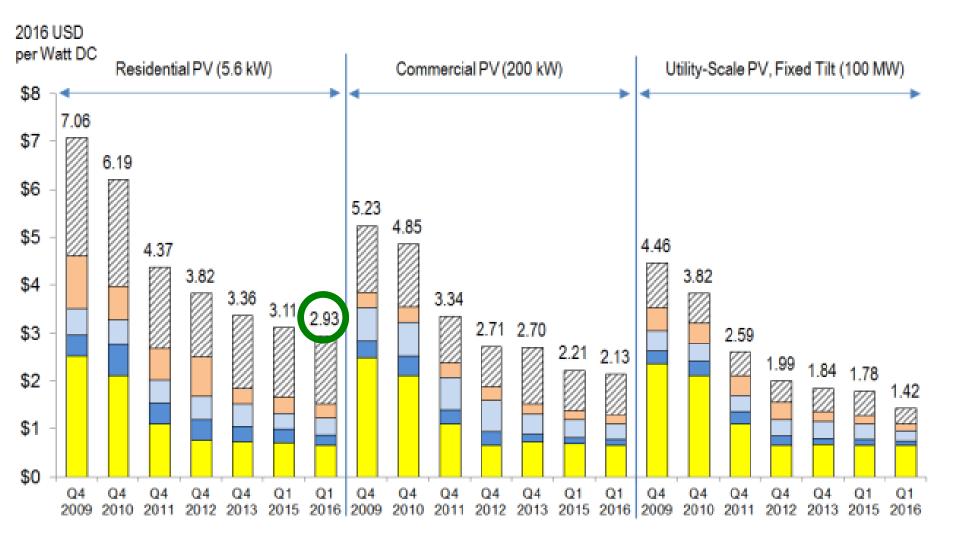
Solar Simplified – Getting Started

Topics

- Components of a PV system
- Solar Financing
- Solar Economics
- Environmental Benefits of Solar
- How to Find a Great Installer
- Solar in California and the World

Solar Economics

GreenTech Media article, 6/1/2017


Should I Sell My Mutual Fund to Go Solar? by Tom Konrad

"I told her solar was one of the best investments I know of for a financial crisis, because it will still be generating the same amount of electricity and savings, no matter what the markets do. And I asked her what sort of payback she thought she was getting from her mutual funds."

Solar Economics - Terms

- Simple Payback (in years) Total investment divided by annual savings
- Simple Return on Investment (in percent) Annual savings divided by total investment, times 100
- Simple Lifetime Cost per kilowatt-hour (in ¢/kWh - cents per kilowatt-hour) Total investment divided by total lifetime energy generated

Solar Economics

Soft Costs - Others (PII, Land Acquisition, Sales Tax, Overhead, and Net Profit)

Soft Costs - Install Labor

Hardware BOS - Structural and Electrical Components

Inverter

Module

Assumptions

- Usage: 6000 kilowatt-hours (kWh) per year
- Bay Area cost of electricity: 24¢ per kWh
- Electricity bill
 6000 * \$.24 ≈ \$1440/year (\$120/mo)

Bay Area cost of solar \$2.50 to \$4 per watt DC, before receiving the 30% federal tax credit

Cash purchase example (1 of 6)

- 4 kW (DC) system
 - Offsets ~90% of usage and bill
- \$10,000 to \$16,000 (before 30% tax credit)
 - \$7000 to \$11,200 after the credit
- Add \$1000 for inverter replacement
- Total (lifetime) cost: \$8000 to \$12,200

- Cash purchase example (2 of 6)
 - Electricity bill: \$1440/yr
 - 4 kW system, total cost: \$8000 to \$12,200
 - Solar system energy output
 - ~1400 kWh per kW per year
 - 4 * 1400 ≈ 5600 kWh (year 1)
 - 0.5% panel degradation per year
 - 126,000 kWh lifetime energy output

- Cash purchase example (3 of 6)
 - Electricity bill: \$1440/yr
 - 4 kW system, total cost: \$8000 to \$12,200 126,000 kWh lifetime output
 - Simple Lifetime Cost per kWh
 - \$8000 / 126,000 ≈ 6.3¢/kWh (\$2.50/watt)
 - \$12,200 / 126,000 ≈ **9.7¢/kWh** (\$4/watt)

Solar Economics Motivation!

- Cash purchase example (4 of 6) Electricity bill: \$1440/yr
 - 4 kW system, total cost: \$8000 to \$12,200 126,000 kWh lifetime output
 - Simple Lifetime Cost/kWh: 6.3 to 9.7¢/kWh
 - Yearly savings: kWh * per-kWh savings / 25
 - 126,000 * (24¢-9.7¢) / 25 ≈ **\$721** (\$4/watt)
 - 126,000 * (24¢-6.3¢) / 25 ≈ **\$892** (\$2.50/watt)

Cash purchase example (5 of 6)

Simple Payback

\$12,200 / \$721 ≈ **17 years** (\$4/watt) \$8000 / \$892 ≈ **9 years** (\$2.50/watt)

Simple Return on Investment \$721 / \$12,200 ≈ **5.9%** (\$4/watt) \$892 / \$8000 ≈ **11.2%** (\$2.50/watt)

- Cash purchase example (6 of 6) \$4/watt ≈ 17 year payback => **5.9%** ROI \$2.50/watt ≈ 9 year payback => **11.2%** ROI
 - Assumes NO rise in the price of grid energy
 - Internal Rate of Return (IRR) is higher
 - Solar ROI is *not taxable*
 - 5-year CD: 2.25% taxable
 - 10 year treasuries: ~2.2% taxable
 - Stock Market: ~7% (look out below!) taxable

Solar Economics – Auto-motivation

Doug McKenzie – doug@sunwork.org

Solar + PV Economics

Solar cash purchase example (7 of 6) 5.9% to 11.2% ROI

Cost to drive a gasoline ("ICE") car

- 10¢/mile (at 30 mpg and \$3/gallon)
 Cost to drive an electric car powered by solar
- **1.8¢/mile** (at 3.4 miles/kWh and 6.3¢/kWh)
- 2.8¢mile (at 3.4miles/kWh and 9.7¢/kWh)

Savings (EV versus ICE): 7.2¢ to 8.3¢/mile

Solar + PV Economics

Solar cash purchase example (8 of 6) Yearly savings: \$721 to \$892

Savings (EV versus ICE): ~8¢/mile At 10,000 miles per year: \$800/year

Add solar savings to ~\$800/yr solar+EV savings: \$1521 to \$1692/yr total savings

Solar + PV Economics

Solar + EV example (9 of 6 – DONE!) \$ 1521/yr to \$1692 /yr total savings

Simple Payback \$12,200/\$1521≈ **8 years** (\$4/watt) \$8000/\$1692 ≈ **4.7 years** (\$2.50/watt)

Simple ROI (not taxable)
\$1521/\$12,200 ≈ 12.5%
(\$4/watt)
\$1692/\$8000 ≈ 21.1%
(\$2.50/watt)

Solar Economics - Spreadsheet

Free online solar economics calculator for cash or loans

PV Calc pvcalc.org

Project Definition							
General Infor	mation	Setup cost (all in)					
Currency	USD 🔻	Price (per kWp)	2800				
Divisor	1	Running cost					
Useful life (years)	25	Lease (€/year)	0				
Nominal power (kWp)	5	Insurance prem. (%)	0				
Annual Yield <i>per kWp</i>	1400	Maintenance (%)	0				
(kWh/kWp)	0.5	Inflation rate (%/year)	2				
Degradation (%/year)	0.5	Financing					
Feed in tariffs		Own funds (%)	100				
Years	0	Loan type	Redeemable •				
Price (per kWh)	0	Redemption Sched.	Uniform •				
Index linked		Years	0				
Own consumption			-				
FIT subsidy (€/kWh)	0	Interest rate (%)	0				
Own consumption	0	Disagio (%)	0				
(kWh/year)	0	Investment Yield (%)	0				
Electricity price projection		Тах					
Price now (per kWh)	0.24	Tax rate	0				
Energy Price Inflation (%/year)	2		help				

Calculate

Reset

Solar Sleeponomics?

How are we doing,

Solar Economics

Tony Seba: "Your next oil well makes my next oil well more expensive. Your next solar panel makes my next solar panel cheaper"

Solar Simplified – Getting Started Topics

- Components of a PV system
- Solar Financing
- Solar Economics
- Environmental Benefits of Solar
- How to Find a Great Installer
- Solar in California and the World

Solar Environmental Benefits

- Reduces fossil fuel dependence
- Reliable, safe, clean energy
- Enables clean transportation (solar-powered EVs)
- Reduces need for utility equipment and maintenance
- Reduces need for remote power plants, substations and transmission lines
- Fast-growing labor-intensive industry creates many jobs
- Increases voter awareness about energy
- Enables clean home appliances (oven, cooktop, clothes dryer, A/C, space & water heat)
- Starts conversations, enables clean power bragging rights

Solar Simplified – Getting Started Topics

- Components of a PV system
- Solar Financing
- Solar Economics
- Environmental Benefits of Solar
- How to find a Great Installer
- Solar in California and the World

Find a Great Installer

Select a great installer

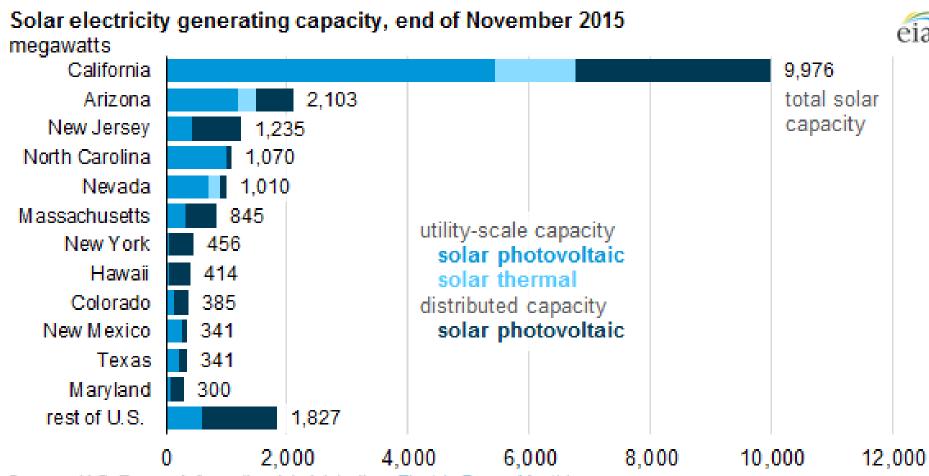
- Referrals from friends and neighbors (<u>Nextdoor.com</u>)
- Check online reviews to find or assess or select contractors
 - <u>SolarReviews.com</u>
 - <u>Yelp.com</u>

- Get bids from several licensed contractors Ask if they're familiar with *your* building dept.
- Ask for (and check) their references
- Check California's database of solar contractors <u>http://www.gosolarcalifornia.ca.gov/database/search-new.php</u>
- Verify the contractor's license <u>www.cslb.ca.gov</u>

Find a Great Installer

When you've found a great installer

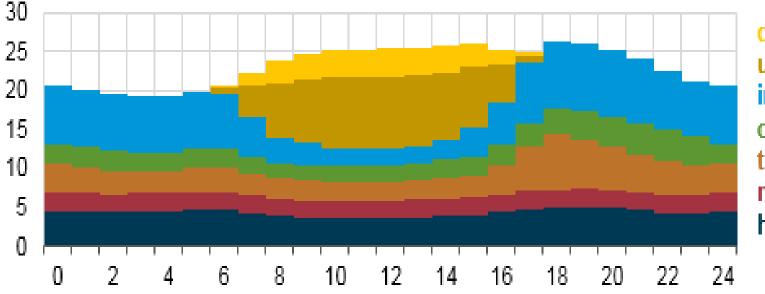
- Ask about
 - Equipment choices, especially panels and inverters
 - Reputable equipment manufacturers?
 - Lower cost or higher efficiency panels?
 - String inverters or microinverters or DC optimizers?
 - Panel layout on your roof and system size suggestions
 - Financing alternatives offered
 - Aesthetics
 - Warranties
- Few construction projects go perfectly.
 Great contractors know how to build, but also how to resolve all problems to your satisfaction


Watch your meter run backwards!

Solar Simplified – Getting Started Topics

- Components of a PV system
- Solar Financing
- Solar Economics
- Environmental Benefits of Solar
- How to Find a Great Installer
- Solar in California and the World

Half of all solar in the US is in California!



Source: U.S. Energy Information Administration, Electric Power Monthly

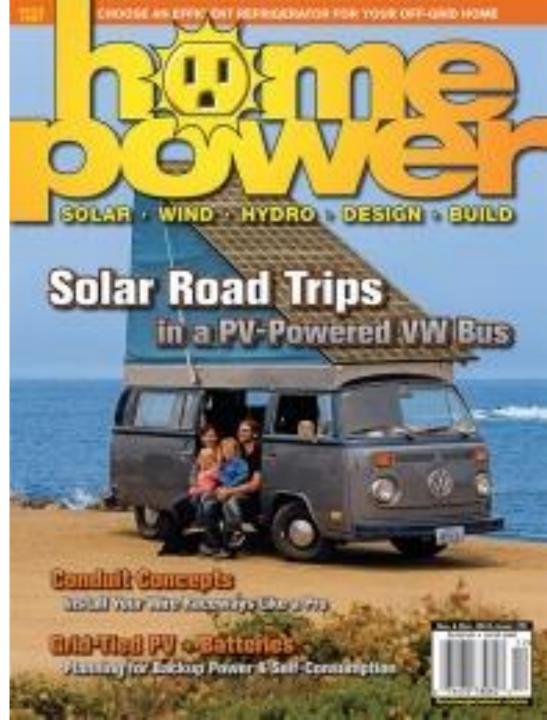
March 11, 2017 midday: solar generated half of California's total electricity demand

California Independent System Operator net generation, March 11, 2017 gigawatthours

distributed solar utility-scale solar imports other renewables thermal nuclear hydroelectric

California DG

Year	DG MW	Growth	Cumulative	CAGR				
2004	30		61		6,000.0			
2005	34	14.9%	95		0,000.0			
2006	49	44.7%	145		5,000.0			
2007	83	68.1%	228					
2008	128	54.0%	356		\$ 4,000.0			
2009	117	-8.5%	473					
2010	175	49.8%	648		0.000,0 cit <u>f</u>			
2011	283	61.1%	931					
2012	335	18.7%	1266		2,000.0			
2013	473	41.0%	1739		1,000.0			
2014	641	35.5%	2380					
2015	1049	63.6%	3429					
2016	1267	20.8%	4696	36.7%	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
3/31/17	243		4938		1993			
	Capacity in Year Original Prior Years' Capacity							


<u>californiadgstats.ca.gov/charts</u> – through 3/31/2017

SolPad

solpad.com/product/solpad-mobile

Solar Powered VW Bus

Solar Powered Home

Tesla Solar Roof

tesla.com/solarroof

Church-top Solar

Solar in California Power to the Creatures

Solar Parking - De Anza College

Alcatraz – Join the NorCal Solar tour! July 10, 2017

Ivanpah Solar Power Plant

Off-grid Solar

Rwanda ~10 watts

Nepal ~100 watts

Solar Power Plant - Les Mées, France

Worldwide growth of photovoltaics

Cumulative capacity in megawatts [MWp] grouped by region^{[1][2][3][4][5]} No split-up by region for 2016 and 2017 available yet 400,000 T 300,000 200,000 100,000 20112013 2015 2017 2007 2009 Europe Asia-Pacific Americas China Middle East and Africa Rest of the world

Solar in the World

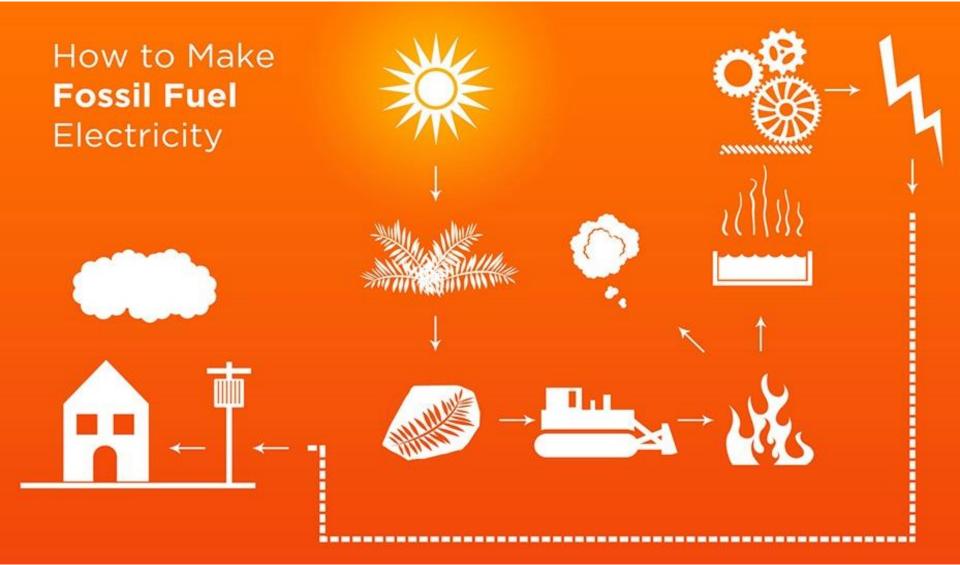
Timeline of the largest PV power stations in the world

Year ^(a)	Name of PV power station	Country	Capacity MW
1982	Lugo	United States	1
1985	Carrisa Plain	United States	5.6
2005	Bavaria Solarpark (Mühlhausen)	Germany	6.3
2006	Erlasee Solar Park	Germany	11.4
2008	Olmedilla Photovoltaic Park	Spain	60
2010	Sarnia Photovoltaic Power Plant	Canada	97
2011	Huanghe Hydropower Golmud Solar Park	China	200
2012	Agua Caliente Solar Project	United States	290
2014	Topaz Solar Farm ^(b)	United States	550
2015	Solar Star ^(b)	United States	579
2015	Longyangxia Dam Solar Park	China	850
2017	Kurnool Ultra Mega Solar Park	💼 India	900

Worldwide growth of photovoltaics

China's New 5 year plan

- \$360 billion into renewable power by 2020
- \$144 billion into solar
 = 150 GW of solar by 2020


India's New National Solar Mission

• Expand from 3 MW today to 20,000 MW (20 GW) by 2020, and 200 GW by 2050.

The Sun: Less than two hours of sunlight reaching the earth contains enough energy to provide all of humanity's energy needs for a full year

Not-Solar Not-Simplified

Help go from this...

Solar Simplified

To this!

How to Make **Solar** Electricity

Thanks!

Questions?

Now or anytime doug@sunwork.org 650-279-6063